NCCR MARVEL Distinguished Lecture

The strong correlation problem: A quantum chemistry perspective

Prof. Gustavo E. Scuseria,
Department of Chemistry, Department of Physics and Astronomy,
Department of Materials Science and NanoEngineering
Rice University, Houston, USA

Tuesday 13th January, 16:15, Room MXF-1

Abstract: Computational quantum chemistry is a very successful field. However, 89 years after Schrödinger's equation, strongly correlated systems remain outside the realm of accurate calculations. The reigning wavefunction paradigm, coupled cluster (CC) theory with single and double excitations, accurately describes weak electron correlation but is known to fail in cases of strong correlation. The same is true for density functional approximations. This talk will address recent efforts in our research group to deal with strongly correlated systems, including bulk systems, using first principles wavefunction methods. Our models make extensive use of similarity transformed Hamiltonians and the concept of pairing, but they do so utilizing two different bases: one is defined by the traditional reference determinant and the other one by the correlator themselves. Using those models as impurity solvers, we can study bulk systems using quantum embedding theories. This talk will discuss how quantum chemistry inspired tools can address the challenge of strongly correlated materials.